This text is copied straight from the Linux Journal.

ATA over Ethernet is a network protocol registered with the IEEE as Ethernet protocol 0x88a2. AoE is low level, much simpler than TCP/IP or even IP. TCP/IP and IP are necessary for the reliable transmission of data over the Internet, but the computer has to work harder to handle the complexity they introduce.

Users of iSCSI have noticed this issue with TCP/IP. iSCSI is a way to send I/O over TCP/IP, so that inexpensive Ethernet equipment may be used instead of Fibre Channel equipment. Many iSCSI users have started buying TCP offload engines (TOE). These TOE cards are expensive, but they remove the burden of doing TCP/IP from the machines using iSCSI.

An interesting observation is that most of the time, iSCSI isn't actually used over the Internet. If the packets simply need to go to a machine in the rack next door, the heavyweight TCP/IP protocol seems like overkill.

So instead of offloading TCP/IP, why not dispense with it altogether? The ATA over Ethernet protocol does exactly that, taking advantage of today's smart Ethernet switches. A modern switch has flow control, maximizing throughput and limiting packet collisions. On the local area network (LAN), packet order is preserved, and each packet is checksummed for integrity by the networking hardware.

Each AoE packet carries a command for an ATA drive or the response from the ATA drive. The AoE Linux kernel driver performs AoE and makes the remote disks available as normal block devices, such as /dev/etherd/e0.0-just as the IDE driver makes the local drive at the end of your IDE cable available as /dev/hda. The driver retransmits packets when necessary, so the AoE devices look like any other disks to the rest of the kernel.

In addition to ATA commands, AoE has a simple facility for identifying available AoE devices using query config packets. That's all there is to it: ATA command packets and query config packets.

Anyone who has worked with or learned about SANs likely wonders at this point, "If all the disks are on the LAN, then how can I limit access to the disks?" That is, how can I make sure that if machine A is compromised, machine B's disks remain safe?

The answer is that AoE is not routable. You easily can determine what computers see what disks by setting up ad hoc Ethernet networks. Because AoE devices don't have IP addresses, it is trivial to create isolated Ethernet networks. Simply power up a switch and start plugging in things. In addition, many switches these days have a port-based VLAN feature that allows a switch effectively to be partitioned into separate, isolated broadcast domains.

The AoE protocol is so lightweight that even inexpensive hardware can use it. At this time, Coraid is the only vendor of AoE hardware, but other hardware and software developers should be pleased to find that the AoE specification is only eight pages in length. This simplicity is in stark contrast to iSCSI, which is specified in hundreds of pages, including the specification of encryption features, routability, user-based access and more. Complexity comes at a price, and now we can choose whether we need the complexity or would prefer to avoid its cost.

Simple primitives can be powerful tools. It may not come as a surprise to Linux users to learn that even with the simplicity of AoE, a bewildering array of possibilities present themselves once the storage can reside on the network.

To find out more go to the URL for this article and read about Stan the Archivist by scrolling down.